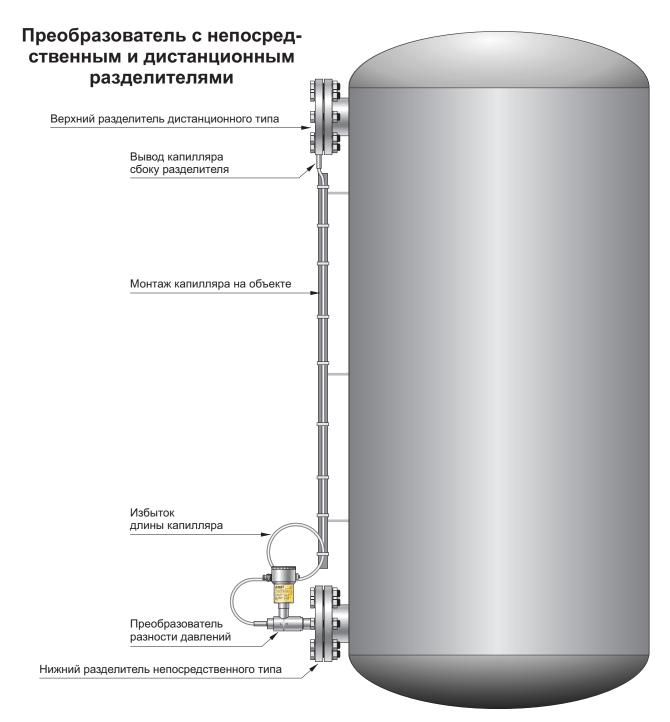


Интеллектуальный преобразователь нактор разности давлений APR-2200 с дистанционными разделителями

- ✓ Многообразное применение, в том числе измерения гидростатическим методом: уровня в закрытых резервуарах (под давлением), плотности и границы фаз
- ✓ Возможность конфигурации начала и конца диапазона измерений (также путём заданного давления)
- ✓ Выходной сигнал 4...20 мА, 0...20 мА, 0...5 мА + протокол НАКТ
- ✓ Основная приведенная погрешность ±0,1%, цифровая компенсация дополнительных погрешностей
- ✓ Взрывобезопасное исполнение 0ExialICT4/T5/T6 X, 1ExdIICT5/T6 X
- ✓ Комплект приемника давления конструктивно собран методом сварки, что гарантирует долговременную герметичность блока в целом


Пример измерения перепада давления на фильтре

Рекомендации

Применять преобразователь с двумя дистанционными разделителями рекомендуется для измерения разности давлений там, где гидростатическое давление манометрической жидкости в капиллярах, значительно меньше, чем измерительный диапазон преобразователя. Наилучший метрологический результат получится при применении

достаточно коротких, одинаковых по длине капилляров, с одинаковыми разделителями. В такой конфигурации дополнительные температурные погрешности, связанные с дистанционным разделением, в равной степени воздействуют на обе измерительные камеры преобразователя разности давлений и, таким образом, взаимно компенсируются.

Пример измерения уровня в накопительном резервуаре

Рекомендации

Применять преобразователь с непосредственным разделителем (соединённым с плюсовой измерительной камерой) и дистанционным (соединённым с минусовой камерой) рекомендуется для гидростатических измерений уровня, плотности, границы фазы и разности давлений (при дифференцированной высоте точек отбора импульсов*).

В такой конфигурации преобразователя, при изменениях температуры окружающей среды, одновременно происходят два противоположные явления. 1) Изменяется объём, значит и плотность манометрической жидкости в капилляре, вызывая, таким образом, изменение гидростатического давления, связанного с расстоянием между разделителями по вертикали. 2) Этому явлению противодействует упругая реакция разделительной

мембраны верхнего разделителя: происходит прогиб мембраны, в результате изменения объёма манометрической жидкости.

На основании опытов и исследований, фирма «Аплисенс» поставляет пользователям подобранные по механическим свойствам мембраны, гарантирующие компенсацию погрешностей при изменении температуры окружающей среды.

Наилучшие метрологические результаты получают комплекты, оснащённые фланцевыми разделителями DN 80, DN 100, A 109, S-Comp либо разделителями S-Mazut, S-DIN или S-Clamp, с диаметром не менее 75 мм, при длине капилляра (1...1,3)м × (расстояние разделителей по вертикали). Рекомендуется применение одинаковых разделителей на нижнем и верхнем отборе давления.

^{*} Разница в высоте отбора импульсов давления, при которой гидростатическое давление манометрической жидкости сравнимо или больше, чем измерительный диапазон преобразователя.

Преобразователь APR-2200. Примеры конструктивных исполнений

Внимание: Соответствующее конструктивное исполнение полного комплекта преобразователя, разделителей, капилляров и соответствующий выбор манометрической жидкости зависит от многих факторов, таких как: физические, химические свойства и диапазон температур среды измерения, расстояния разделителей по вертикали, измерительного диапазона и статического давления, диапазона температур окружающей среды, а также технических условий монтажа разделителей к объекту. Консультанты фирмы «Аплисенс» помогут Вам подобрать оптимальный комплект.

Предназначение, конструкция

Преобразователь APR-2200 предназначен для измерения разности давлений газа, пара и жидкости там, где необходимо применение мембранных сепараторов, а точки отбора импульсов давления могут быть отдалены друг от друга на несколько метров. Типичным применением являются: гидростатические измерения уровня в закрытых резервуарах, плотности и границы фаз. а также измерение перепада давления на фильтрах, разности давлений между средами на пастеризаторах и т.п. Предлагаемые типы разделителей дают возможность произвести измерения большинства свойств сред измерения. Измерительным элементом является пьезорезистивная кремниевая монолитная структура, отделённая от сред измерения разделительными и компенсационной мембранами, а также самой системой дистанционного разделения. Специальная конструкция измерительного модуля обеспечивает устойчивость к ударным воздействиям измеряемым давлением и перегрузке до 4 МРа. Электронный системный блок расположен в цилиндрическом корпусе преобразователя со степенью защиты IP65 или IP66.

Конфигурация

По желанию потребитель имеет возможность изменения и конфигурирования следующих параметров:

- единицы измерения давления,
- начало и конец устанавливаемого диапазона измерений,
- постоянной времени,
- вид характеристики: линейная, корневая, обратная линейная (выходной сигнал 20 ÷ 4 mA).

Коммуникация

Конфигурация и калибровка преобразователя производится с помощью коммуникационного устройства КАР, некоторых коммуникационных устройств (HART), блоком управления (только конфигурация), встроенного в корпус преобразователя типа -AL-, а также персонального компьютера (PC) с использованием преобразователя HART/USB и программного обеспечения "RAPORT-2" производства «Аплисенс».

Обмен данными с преобразователем APR-2200 добавочно даёт возможность: идентификации преобразователя, контроля измеряемой величины разности давлений, выходного тока и % ширины диапазона в данный момент времени.

Диапазоны измерений

H					
	Основной	Мин. устанавл.	Расстояние между	Максимальная устанавл. ширина измерительного	Допускаемое
	диапазон	ширина измерит.	разделителями по	диапазона учитывая действительное расстояние	статическое
		диапазона	вертикали	между разделителями по вертикали (м)	давление
	(-16 ÷ 16) кПа	0,1 м Н₂О	≤ 1,7 M	[1 + (расст. между разделителями по верт. × 0,94)] м H ₂ O	4 МПа
	(-50 ÷ 50) кПа	0,5 м H ₂ O	≤ 6 м	[5 + (расст. между разделителями по верт. × 1,04)] м Н ₂ О	4 МПа
	(-160 ÷ 200) кПа	1,5 м H ₂ O	≤ 15 M	[20 + (расст. между разделителями по верт. × 1,04)] м Н ₂ О	4 МПа
	(-160 ÷ 1600) кПа	100 кПа	≤ 15 M	1600 кПа	4 МПа

ВНИМАНИЕ: Представленное в таблице максимальное расстояние между разделителями по вертикали касается измерения уровня, гарантируя возможность обнуления преобразователя при пустом резервуаре. Для измерения плотности или границы фаз (рафинадная, сахарная, химическая промышленности и нефтеперерабатывающие заводы) расстояние между разделителями по вертикали может быть больше.

Метрологические параметры

Предел допускаемой приведенной погрешности ≤±0,1% (основного диапазона измерений)

Остальные параметры – в соответствии с характеристиками преобразователя разности давлений APR-2000.

Погрешности из-за влияния систем разделения – согласно соответствующей схеме измерения давления в разделе III (Мембранные разделители), по отношению к дистанционному разделению.

ВНИМАНИЕ: Дополнительную абсолютную погрешность (уход) "нуля" от воздействия температуры окружающей среды, при равной температуре обоих капилляров, возможно скомпенсировать путём конфигурации преобразователя, разделителей и капилляров, в соответствии с рекомендациями, описанными на страницах II. 17 и II. 18.

Электрические параметры – согласно параметрам преобразователя разности давлений APR-2000

Условия работы

Диапазон температур окружающей среды -40...85°C Диапазон температур измеряемой среды

- согласно параметрам соответствующего разделителя (дистанционное разделение)

Специальное исполнение:

Ех – искробезопасное исполнение

Exd — взрывозащищенный корпус (только APR-2200ALW)

10 МПа, 16 МПа – допустимое статическое давление 10 МПа или 16 МПа

Q... – дополнительная тренировка прибора для увеличения надежности; подробности в РЭ Нестандартный основной диапазон преобразователя

Способ заказа

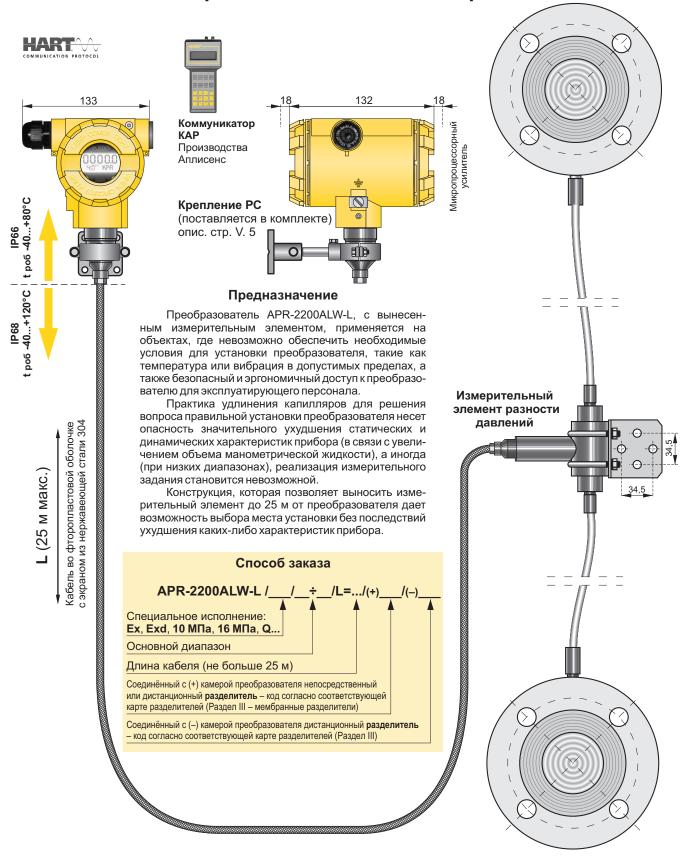
APR-2200PD. APR-2200PZ APR-2200ALW, APR-2200ALE / Тип преобразователя (описание стр. II. 3, II. 7) Специальное исполнение: Ex, Exd, 10 МПа, 16 МПа, Q... Основной диапазон Соединённый с (+) камерой преобразователя непосредственный или дистанционный разделитель - код согласно соответствующей карте разделителей (Раздел III – мембранные разделители) Соединённый с (-) камерой преобразователя дистанционный разделитель - код согласно соответствующей карте разделителей (Раздел III)

Схемы электрических присоединений – согласно схемам преобразователя разности

давлений APR-2000

Электрический монтаж

Электрическое подключение преобразователя рекомендуется производить с помощью экранированного кабеля. Полезно предусмотреть при установке место для подключения комму-


Пример: Преобразователь разности давлений АРR-2200 / изготовление стандартное / корпус типа PD / основной диапазон -130 ÷ 200 кПа / со стороны (+) непосредственный фланцевый цилиндрический разделитель DN80 PN40. длина цилиндра 100 мм / со стороны (-) дистанционный фланцевый плоский разделитель DN80 PN40, капилляр 8 м

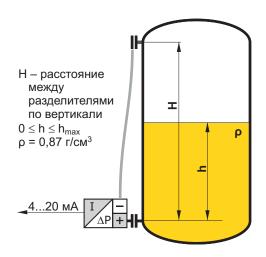
APR-2200 / PD / -130 ÷ 200 кПа / (+) S-T – DN80; T = 100 мм / (-) S-PK – DN80; K = 8 м

Преобразователь APR-2200ALW-L

с выносным измерительным элементом для сокращения длины капилляров

Преобразователь APR-2200. Примеры применений

Для упрощения математических действий введём коэффициент плотности среды измерения Хр.


$$X\rho = \frac{\rho_{\text{среды изм.}}\left[\text{г/cm}^3\right]}{\rho_{\text{воды 4°C}}\left[\text{г/cm}^3\right]}$$

Поскольку плотность воды при температуре 4° С составляет 1 г/см³, то **коэффициент плотности Хр численно равен плотности среды измерения, выраженной в г/см³**. Чтобы определить гидростатическое давление столба жидкости в [мм H_2O], достаточно умножить высоту столба h [мм] на коэффициент плотности этой жидкости X_P . В связи с тем, что легко определить гидростатическое давление в [мм H_2O] и имеется возможность конфигурировать преобразователь в этих единицах, в дальнейшем, при описании методов проведения измерений, пользуемся единицами измерения [мм H_2O] и коэффициентом плотности X_P .

Конфигурация преобразователя APR-2200 для измерения уровня жидкости в резервуаре

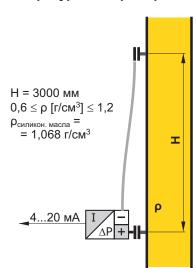
Определение задачи по измерению:

При изменении выходного сигнала от 4 до 20 мА, преобразовать изменение уровня жидкости с плотностью ρ = 0,87 г/см³ в диапазоне от 0 до h_{max} .

- 1. Установить преобразователь в рабочем положении на пустом резервуаре.
- 2. Подключить преобразователь, обеспечив возможность коммуникации HART.
- 3. Подключить коммуникационное устройство КАР, идентифицировать преобразователь и выбрать функцию "конфигурация".

- 4. В меню конфигурации выбрать "выходные параметры".
- 5. В меню выходные параметры:
 - а) изменить единицы измерения на мм H₂O при 4°C,
 - b) выбрать и установить (поочерёдно) с помощью функции «запись величины» начало ($X\rho \times h_{min}$ [мм]) и конец измерительного диапазона ($X\rho \times h_{max}$ [мм]), соответственно: 0 и (0,87 h_{max} [мм]),
 - с) для компенсации гидростатического давления манометрической жидкости в капиллярах, следует подтвердить (ввод) начало измерительного диапазона с помощью функции «заданное давление»; Преобразователь, находящийся под воздействием только давления манометрической жидкости (пустой резервуар), сместит начало и конец измерительного диапазона, компенсируя величину давления манометрической жидкости (силиконовое масло).

Конфигурированный таким образом преобразователь, готов к реализации представленной задачи по измерению.


В случае заполненного резервуара для конфигурации преобразователя следует рассчитать гидростатическое давление манометрической жидкости ($H \times X_{\mathsf{р}_{\mathsf{Силикон.\, масла}}}$) в капиллярах. Для этого следует знать расстановку разделителей по вертикали (H), а также плотность масла в капиллярах (Xр). Значения начала и конца диапазона следует ввести с помощью функции «запись величины», записывая их с учетом рассчитанного гидростатического давления:

Начало [мм H_2O] = -H [мм] × $X\rho_{\text{силикон. масла}}$ Конец [мм H_2O] =

 $=h_{max}$ [мм] \times Хр_{измеряемой жидкости} -H [мм] \times Хр_{силикон. масла}

 $ho_{\text{силикон. масла}}$ типа DC-550 составляет 1,068 г/см 3 $ho_{\text{силикон. масла}}$ типа AK-20 составляет 0,945 г/см 3

Конфигурация преобразователя АРК-2200 для измерения плотности жидкости

Определение задачи по измерению:

При изменении выходного сигнала от 4 до 20 мА преобразовать изменение плотности жидкости в диапазоне от $\rho_{min}=0.6$ г/см 3 до $\rho_{max}=1.2$ г/см 3 при расстановке разделителей по вертикали на расстояние H=3000 мм. Система разделителей наполнена маслом типа DC-550 с плотностью $\rho_{\text{силикон. масла}}=1,068$ г/см 3 .

1. Рассчитать значение начала измерительного диапазона, используя зависимость:

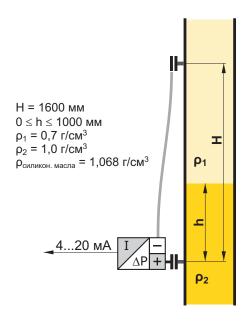
$$H_{\text{[мм]}} \times (X\rho_{\text{min}} - X\rho_{\text{силикон. масла}}) = 3000 \times (0,6-1,068) = -1404 [мм H_2O]$$

2. Рассчитать значение конца измерительного диапазона, используя зависимость:

$$H_{\text{[мм]}} \times (X\rho_{\text{max}} - X\rho_{\text{силикон. масла}}) = 3000 \times (1,2-1,068) = 396 \text{ [мм H}_2\text{O}]$$

- 3. Обнулить преобразователь при положении разделителей на одном уровне.
- 4. Установить преобразователь в рабочее положение.
- 5. Подключить преобразователь, обеспечивая возможность коммуникации HART.

- 6. Подключить коммуникационное устройство КАР, идентифицировать преобразователь и выбрать функцию "конфигурация".
- 7. В меню конфигурации выбрать "выходные параметры".
- 8. В меню выходные параметры:
 - а) изменить единицы измерения на мм H₂O при 4°C,
 - b) ввести значение начала (–1404) и конца (396) измерительного диапазона, с помощью функции «запись величины».


Конфигурированный таким образом преобразователь готов к реализации представленной задачи по измерению. Внимание: Если есть возможность заполнить объект жидкостью, которая своей плотностью отвечает началу измерительного диапазона, то начало измерительного диапазона преобразователя можно установить путём функции «заданное давление».

Измерение границы фаз

Измерение уровня границы фаз жидкостей с различной плотностью выполняется способом измерения средней плотности среды измерения между разделителями.

Пример:

Рассчитать значения начала и конца измерительного диапазона преобразователя APR-2200, сконфигурированного для измерения уровня границы фаз жидкостей в диапазоне (h) от 0 до 1000 мм между жидкостью с плотностью ρ_1 = 0,7 г/см³ и жидкостью с плотностью ρ_2 = 1,0 г/см³, при расстановке разделителей по вертикали H = 1600 мм. В системе разделителей применено масло типа DC-550 с плотностью ($\rho_{\text{силикон. масла}}$) 1,068 г/см³.

Определение величины начала измерительного диапазона состоит в расчете разности давлений, устанавливающейся на преобразователе при наполнении резервуара исключительно легкой жидкостью:

Начало =
$$H \times (X\rho_1 - X\rho_{\text{силикон. масла}}) =$$

= 1600 мм × (0,7 – 1,068) = –588,8 мм H₂O

Определение значения конца измерительного диапазона состоит в суммировании прироста давления, вызванного появлением метрового столба более тяжелой жидкости:

Конец = Hачало +
$$(X\rho_2 - X\rho_1)$$
 × h = $-588,8$ мм H_2O + $+(1,0-0,7)$ × 1000 мм = $-288,8$ мм H_2O

Дополнительные сведения

Коррекцию установок преобразователя можно производить относительно лабораторных результатов измерения плотности образцов измеряемой жидкости. Наиболее часто такая необходимость возникает тогда, когда измерение производится на отрезке трубопровода, в котором скорость течения измеряемой жидкости приближается к нескольким метрам в секунду.

Увеличение расстояния при расстановке разделителей по вертикали влечет за собой увеличение ширины диапазона и часто улучшает точность измерения.

При проектировании перепада высот расстановки разделителей необходимо обеспечить такое условие, чтобы величина разности давлений, которая установится на преобразователе, находилась в границах основного диапазона.

Максимальное расстояние при расстановке разделителей по вертикали (H) зависит от основного диапазона измерений преобразователя, а также предельных значений плотности измеряемой жидкости (ρ_{min} ; ρ_{max}).

В случае, если $\rho_{min} < \rho_{\text{силикон. масла}} < \rho_{max}$, то перепад высот расстановки разделителей должен обеспечивать следующие условия:

$$H\text{ [мм]} \leq \frac{\text{нижняя граница основного диапазона [мм } H_2O]}{X\rho_{\text{мин}} - X\rho_{\text{силикон. масла}}}$$

H [мм]
$$\leq \frac{$$
 верхняя граница основного диапазона [мм H_2O] $X \rho_{\text{макс}} - X \rho_{\text{силикон. масла}}$

Пример:

Определить максимальное расстояние при расстановке разделителей по вертикали для преобразователя **APR-2200 / -10...10 кПа** при измерении плотности жидкости в диапазоне от 0,6 до 1,2 г/см³. В системе сепарации применено силиконовое масло AK-20 с плотностью 0,945 г/см³.

Нижняя граница основного диапазона преобразователя составляет $-10\ \text{к}\Pi a = -1020\ \text{мм}\ \text{H}_2\text{O}$

$$H \text{ [MM]} \le \frac{-1020}{0.6 - 0.945} \quad \Rightarrow \quad H \text{ [MM]} \le \frac{-1020}{-0.345} \quad \Rightarrow \quad H \text{ [MM]} \le 2957$$

Верхняя граница диапазона преобразователя составляет $+10~\text{к}\Pi a = 1020~\text{мм H}_2\text{O}$

$$H \text{ [MM]} \le \frac{1020}{1,2-0,945} \quad \Rightarrow \quad H \text{ [MM]} \le \frac{1020}{0,255} \quad \Rightarrow \quad H \text{ [MM]} \le 4000$$

В приведенном примере оба условия удовлетворяют величине расстановки разделителей не более, чем 2957 мм.